注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

作文豹

丁老师让你从此不怕写作文!中华少年母语写作大课堂!

 
 
 

日志

 
 
关于我

作文豹 诞生于中国文房四宝之乡宣城的作文品牌。创始人丁延清。总校编辑出版“作文豹”系列作文教材、《作文豹》杂志。感兴趣的研究课题:少先队教育学、儿童文学研究、中小学作文教学、培训品牌管理、德鲁克管理学、特劳特和里斯定位理论、世界语、教育培训机构咨询。

网易考拉推荐

【引用】初中数学公式总结  

2011-01-21 17:46:34|  分类: 为儿子收集的文章 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
本文转载自理综老师《初中数学公式总结》
理综老师

 初中数学公式总结 

 

代数部分

 

★基本性质:

-

★分解因式方法:

一提、二套、三分组、四十字、五拆分。

★套公式法分解因式:

★十字相乘法分解因式:

★拆分分组法分解因式:

★解一元一次方程步骤:

去分母→去括号→移项→合并同类项→

将X系数化为1

★解二元一次方程组:

代入消元法、 加减消元法

★解不等式组:

两大取其大,两小取其小,大小小大中间找,

大大小小找不到。

★不等式两边同除以负数不等号方向改变

★一元二次方程的解:

★判别式:

> 0: 方程有两个不等的实根

= 0: 方程有两个相等的实根

< 0: 方程没有实根,

★根与系数的关系(韦达定理):

★a元钱一次存3年期(年利3%)到期本息和:

(1+3% 3)a元            (单利)

★a元钱存1年期(年利2.5%)自动转存共三

年:(1+2.5%) a元         (复利)

★(x,y)关于x=a的对称点是(2a-x,y)

★(x,y)关于y=x的对称点是(y,x)

★(x,y)关于y=-x的对称点是(-y,-x)

★一次函数 的图像特点:

值定增减; 值上下移

★已知两点,确定一次函数

已知三点,确定二次函数

 

★二次函数三种表达式:

        (一般式)

       (顶点式)

   (两根式)

★二次函数对称轴:

二次函数极值:

★图像移动:

★方差:

     ★加权平均数:

 

几何部分

 

★过两点有且只有一条直线

★两点之间线段最短

★同角或等角的补角相等

★同角或等角的余角相等

★过一点有且只有一条直线和已知直线垂直

★直线外一点与直线上各点连接的所有线段中,垂线段最短

★平行公理:经过直线外一点,有且只有一条直线与这条直线平行

★同位角相等,两直线平行

★内错角相等,两直线平行

★同旁内角互补,两直线平行

★如果两条直线都和第三条直线平行,这两条直线也互相平行

★两直线平行,同位角相等

★两直线平行,内错角相等

★两直线平行,同旁内角互补

★定理:三角形两边的和大于第三边

★推论:三角形两边的差小于第三边

★三角形内角和定理:三角形三个内角的和等于180°

★推论1:直角三角形的两个锐角互余

★推论2:三角形的一个外角等于和它不相邻的两个内角的和

★推论3:三角形的一个外角大于任何一个和它不相邻的内角

★三角形中位线平行且等于底边的一半

 

★全等三角形的对应边、对应角相等

★边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

★角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等

★边边边公理(SSS):有三边对应相等的两个三角形全等

★推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

★斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

★定理1:在角的平分线上的点到这个角的两边的距离相等

★定理2:到一个角的两边的距离相同的点,在这个角的平分线上

★角的平分线是到角的两边距离相等的所有点的集合

★等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角)

★等腰三角形顶角的平分线平分底边并且垂直于底边

★等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

★推论3:等边三角形的各角都相等,并且每一个角都等于60°

★等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

★推论1:三个角都相等的三角形是等边三角形

★推论2:有一个角等于60°的等腰三角形是等边三角形

★在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

★一个角为 的直角三角形三边之比:

★一个角为 的直角三角形三边之比:

★会利用直角三角形三边之比求 、  的正弦、余弦、正切值

★直角三角形斜边上的中线等于斜边的一半

★定理:线段垂直平分线上的点和这条线段两个端点的距离相等

★逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

★线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

★定理1:关于某条直线对称的两个图形是全等图形

★定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

★定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

★逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

★勾股定理:直角三角形两直角边的平方和等于斜边的平方,即

★勾股定理的逆定理:如果三角形的三边长a、b、c有关系 ,那么这个三角形是直角三角形

★直角三角形斜边上的高是两直角边在斜边上射影的比例中项

★直角三角形的任一直角边是斜边和该直角边在斜边上射影的比例中项

★多边形内角和定理:n边形的内角的和等于(n-2)×180°

★推论:任意多边的外角和等于360°

★平行四边形性质定理:

1 平行四边形的对角相等

2 平行四边形的对边相等

3 平行四边形的对角线互相平分

★推论 夹在两条平行线间的平行线段相等

★平行四边形判定定理:

1 两组对角分别相等的四边形是平行四边形

2 两组对边分别平行的四边形是平行四边形

3 两组对边分别相等的四边形是平行四边形

4 对角线互相平分的四边形是平行四边形

5 一组对边平行且相等的四边形是平行四边形

★矩形性质定理1 矩形的四个角都是直角

2 矩形的对角线相等

★矩形判定定理

1 有三个角是直角的四边形是矩形

2 有一个角是直角的平行四边形是矩形

3 对角线相等的平行四边形是矩形

★菱形性质定理1 菱形的四条边都相等

2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

★菱形面积==对角线乘积的一半

★菱形判定定理:

1 四边都相等的四边形是菱形

2 对角线互相垂直的平行四边形是菱形

3 有一组邻边相等的平行四边形是菱形

★正方形性质定理:

1 正方形的四个角都是直角,四条边都相等

2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

★正方形的判定:

  1 有一组邻边相等的矩形是正方形

2 两对角线互相垂直的矩形是正方形

3 有一个角是直角的菱形是正方形

4 两对角线相等的菱形是正方形

5 两对角线互相垂直平分且相等的

四边形是正方形

★定理1:关于中心对称的两个图形是全等的

★定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

 

 

★逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

★等腰梯形性质定理:

等腰梯形在同一底上的两个角相等

等腰梯形的两条对角线相等

★等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形

对角线相等的梯形是等腰梯形

★平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

★推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

★推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

★三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

★梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半

★(1)比例的基本性质:如果a:b=c:d,那么ad=bc    如果ad=bc,那么a:b=c:d

★(2)合比性质:如果a/b=c/d,那么

(a±b)/b=(c±d)/d

★(3)等比性质:如果a/b=c/d=…=m/n 

那么(a+c+…+m)/(b+d+…+n)=a/b

★平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例

★推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比

 例

★定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

★平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

★定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

★相似三角形判定定理:

1 两角对应相等,两三角形相似(ASA)

2 两边对应成比例且夹角相等,两三角形相似(SAS)

3 三边对应成比例,两三角形相似(SSS)

★直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

★如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

★性质定理

1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

2 相似三角形周长的比等于相似比

3 相似三角形面积的比等于相似比的平方

★任意锐角的正弦值等于它的余角的余弦值,

任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

★圆是到定点的距离等于定长的点的集合

★圆的内部可以看作是到圆心的距离小于半径的点的集合

★圆的外部可以看作是到圆心的距离大于半径的点的集合

★同圆或等圆的半径相等

★到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

★和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线

★到已知角的两边距离相等的点的轨迹,是这个角的平分线

★到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

★定理:不在同一直线上的三点确定一个圆。

★垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

★推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,必垂直平分弦,并且平分弦所对的另一条弧

★推论2:圆的两条平行弦所夹的弧相等

★定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

★推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

★定理:一条弧所对的圆周角等于它所对的圆心角的一半

★推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

★推论2:半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径

★推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

★定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

★①直线L和⊙O相交 d <r

②直线L和⊙O相切 d = r

③直线L和⊙O相离 d >r

★切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

★切线的性质定理:圆的切线垂直于经过切点的半径

★推论1:经过圆心且垂直于切线的直线必经过切点

★推论2:经过切点且垂直于切线的直线必经过圆心

★切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

★圆的外切四边形的两组对边的和相等

★弦切角定理:弦切角等于它所夹的弧对的圆周角

★推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

★相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

★切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

★推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

★如果两个圆相切,那么切点一定在连心线上

★①两圆外离 d > R+r  

②两圆外切 d =  R+r

③两圆相交 R-r < d  < R+r    (R>r)

④两圆内切 d = R-r             (R>r)

⑤两圆内含 d < R-r            (R>r)

★定理:相交两圆的连心线垂直平分两圆的公共弦

★定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

★弧长计算公式:

L=

★扇形面积公式:

S=

★圆柱侧面积:

S=

★圆锥侧面积

S=

★正三角形面积:

S=

★菱形面积:

S=底*高= 对角线的积

★柱体体积公式:

V=

★圆柱体:

V=

★锥体体积公式:

V=

  评论这张
 
阅读(178)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017